White papers and Application Notes (Free Download)
Access a curated selection of technical papers offering in-depth insights into VHH research and applications. Each document is grounded in scientific rigour and developed to support discovery and innovation.
White Paper “Data-Driven Validation of Synthetic VHHs”
This white paper provides a data-driven validation of Isogenica’s synthetic VHH libraries, powered by Colibra® technology. Designed for biotech and pharmaceutical scientists, it demonstrates how these libraries enhance and accelerate drug discovery, particularly in oncology and immunotherapy
Extending half-lives of VHH antibodies
Because VHHs are small, they can be cleared quickly from the bloodstream. This can be a useful feature for some applications, but often a longer plasma half-life is desirable.
Advantages of VHH in bi-specifics
To learn more about the application of VHHs in bi-specifics, we have condensed our expertise into a downloadable Application Note, which includes:
- a review of the bi-specific mechanisms of action, key targets and our clinical development pipeline
- a summary of Isogenica’s multi-specific plug-and-play platform
- exemplar data using our synthetic VHH antibodies
Optimizing CAR-T and T-cell antibody engagers: a role for VHH single domain antibodies
This whitepaper summarises the clinical and research landscape for CAR-T and T-cell engaging antibody therapies and show how single domain VHH antibodies can be applied to optimise the next generation of these important new therapeutic modalities.
Isogenica’s PD-L1 VHH as Functional Antagonists
PD-1 is an immune checkpoint protein expressed on the surface of multiple types of immune cells, including antigen-stimulated T-cells and tumour specific T-cells1. Interaction between PD-1 and its ligands (PD-L1 or PD-L2), is responsible for the regulation of T-cell activation, apoptosis, proliferation and cytokine production.
Anti-LRP5/6 VHH inhibits WNT pathway and prevents tumour growth
VHH are the variable domain of heavy chain only antibodies. They are small in size (~15 kD) and biophysically robust. With tunable half-lives, these antibodies are ideal for targeting inaccessible epitopes, achieving enhanced tissue penetration, multi-target binding and formatting for payload delivery…